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THE L∞/L2 HANKEL OPERATOR/NORM OF SAMPLED-DATA
SYSTEMS∗
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Abstract. This paper is concerned with the Hankel operator and the Hankel norm of sampled-
data systems. Even though these systems are intrinsically periodically time-varying, no studies
have taken this important feature into account in the treatment of the Hankel operator/norm. We
characterize the Hankel operator/norm of sampled-data systems adequately under the treatment
with the L2 norm for the past input and the L∞ norm for the future output. Such treatment still
captures the essential issue on the periodicity but contributes to neat arguments compared with the
case when the L2 norm is also considered on the future output.
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1. Introduction. Most systems in engineering and science are dynamical sys-
tems, which are characterized as such systems whose present output is not determined
solely by the present input but is affected by the past input as well. Hence, it is impor-
tant to quantify the effect of the past input on the future output. Roughly speaking,
the mapping between the past input and the future output is called the Hankel op-
erator and its norm is called the Hankel norm [1]. Studies on the Hankel operator/
norm have attracted much attention in control theory because of their relevance to
the model reduction and related problems of dynamical systems [2, 3, 4, 5, 6]; when a
dynamical system is approximated by another, the error system is also dynamical and
one of the reasonable ways for assessing the effectiveness of the approximation is to
evaluate the Hankel norm. It is often the case that both the past input and the future
output for stable continuous-time systems are evaluated in the L2 norm, but there is
also a study that is interested in evaluating the output in the L∞ norm [7]. In this
alternative situation, it has been clarified for continuous-time linear time-invariant
(LTI) systems that the Hankel norm equals the corresponding induced norm, where
the latter is relevant to the input-output behavior with respect to the future input
and the future output. It is also well-known that the above induced norm is further
equal to the standard H2 norm for the multi-input single-output (MISO) case [7, 8, 9]
(and thus the relationship among the L∞/L2 Hankel/induced norms and H2 norm,
whose relevance to impulse responses is well known, is also well-understood even for
the multioutput case). Hence, the Hankel norm in that situation is important also as
a measure for disturbance rejection ability in a usual sense.
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This paper deals with a relevant topic for stable sampled-data systems. Specifi-
cally, we first assume that the continuous-time plant is LTI and the controller is also
LTI in the discrete-time sense. We then assume that the disturbance input affect-
ing the sampled-data system is a continuous-time signal and that the output to be
evaluated is also a continuous-time signal. Under these assumptions, we extend the
study of the Hankel operator for a continuous-time LTI system to such a sampled-data
system. To our best knowledge, there exists only a single study in that direction for
sampled-data systems [10]. This pioneering study, however, does not properly capture
the quite essential feature of sampled-data systems in terms of their continuous-time
input-output behavior; because of the periodic action of the sampler, the input-output
characteristics are h-periodic, where h is the sampling period. Hence, it would matter
how to determine the time instant at which the past and future should be separated
when we develop a study on the Hankel operator/norm of sampled-data systems.
Nevertheless, this very important time instant was fixed in that study to a sampling
instant.

The present paper aims at developing more sophisticated and appropriate argu-
ments on the Hankel operator/norm of sampled-data systems. In tackling such a
study, we take a standpoint slightly different from that in [10] and evaluate the future
output in the L∞ norm rather than the L2 norm. Thus, we actually consider what we
call the L∞/L2 Hankel operator/norm of sampled-data systems. The authors believe
that slightly modifying the direction in this way is not essential in amending the study
in [10] in its treatment of the instant separating the past and future and that similar
arguments can also be developed for the L2/L2 Hankel operator/norm dealt with
in that study. Still, working in the modified direction is convenient because of the
properties of the L∞ space. Indeed, by working on what we call the overlap L∞/L2

Hankel operator, we can avoid introducing two finite-rank operators whose composi-
tion gives the mapping from the past input to the future output (where their explicit
representations would become rather messy in sampled-data systems unless the past
and future are separated at a sampling instant as in [10]). Furthermore, we can clarify
the relationship between the modified direction and two other related studies; one is
the aforementioned study on the L∞/L2 Hankel norm of continuous-time LTI sys-
tems [7] and the other on the L∞/L2-induced norm of sampled-data systems [11, 12]
(including some relevance to the H2 norm of sampled-data systems [12, 13, 14]).

The organization of this paper is as follows. Section 2 first revisits the study in [10]
on the Hankel norm of sampled-data systems, raises an issue therein that is crucial
and motivates the present study, and gives a brief sketch of the problem tackled in the
present paper. The lifting treatment of sampled-data systems used in our theoretical
development is also reviewed. Section 3 first gives the formal definitions of the L∞/L2

Hankel operator/norm and introduces the Hankel operator matrix playing a central
role in this study. It is also argued that an approach that views the “past” and
“future” to have an overlap by a single sampling interval is helpful for the following
arguments as an intermediate step. The reasons why this paper deals with the L∞/L2

Hankel operator/norm instead of the usual L2/L2 Hankel operator/norm are also
stated, and some preliminary study is provided as to when the L∞/L2 Hankel operator
is well-definable (even though the L∞/L2 Hankel norm is always well-defined for
stable sampled-data systems). Section 4 tackles the problem raised in section 2 and
gives the main results on the characterization of the L∞/L2 Hankel operator/norm
of sampled-data systems including the associated numerical computation methods.
More importantly, the relevance of this computation method to determining the worst
instant at which the past and future are separated (if it is well-definable) is also
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discussed. Section 5 gives a numerical example for the arguments developed in this
paper and confirms the validity of the standpoint of this paper. Section 6 gives
concluding remarks on the paper.

The notation in this paper is as follows. N denotes the set of positive integers
and N0 implies N ∪ {0}. Rν denotes the set of real ν-vectors, whose 2-norm and
∞-norm are denoted by |x|2 and |x|∞, respectively. For a vector function z(·) defined
on [Θ ,∞), its L∞,∞[Θ ,∞) norm and L∞,2[Θ ,∞) norm are defined as in [7] by

‖z(·)‖[Θ]
∞,p := ess sup

Θ≤t<∞
|z(t)|p, p = 2,∞,(1)

if the right-hand side is well-defined. The function space of such z(·) on [Θ ,∞)
endowed with the associated norm is denoted by L∞,p[Θ ,∞) (p = 2,∞), and the sim-
plified notation L∞[Θ ,∞) (or even L∞) is also used occasionally to mean L∞,∞[Θ ,∞)
and/or L∞,2[0,∞). Furthermore, we sometimes take the interval [0, h) instead and
refer to the function space L∞[0, h). On the other hand, the L2(−∞,Θ) norm of a
vector function w(·) defined on (−∞,Θ) is denoted by

‖w(·)‖[Θ]
2− :=

(∫ Θ

−∞
w(t)Tw(t)dt

)1/2

.(2)

We also say w ∈ L2(−∞,Θ) even for w defined on (−∞,∞) when w(t) = 0, t ≥ Θ .
We also use the shorthand notation L2 for L2(−∞,Θ).

This paper is a completely rewritten and substantially extended version of a very
early conference version [15], e.g., with many more theorems (and all their proofs)
covering a much larger scope as well as a numerical example.

2. Revisiting Hankel operators in sampled-data systems and lifting
treatment of sampled-data systems. This section briefly revisits the study on
the Hankel operator/norm of sampled-data systems [10] and then reveals a quite
important missing issue in the study. Then, we state why this paper is interested
in what we call the L∞/L2 Hankel operator/norm (whose precise definitions will be
given in the following section). Finally, we review the lifting treatment of sampled-
data systems [16, 17, 18] to facilitate the following arguments.

2.1. Revisiting Hankel operators in sampled-data systems. Many studies
on Hankel operators for LTI systems have been conducted, in most of which the input
in L2(−∞, 0) and the output in L2[0,∞) are regarded as the past input and future
output, respectively. This paper is interested in the study of the Hankel operator/
norm for sampled-data systems consisting of a continuous-time plant and a discrete-
time controller connected through the ideal sampler and the zero-order hold. Such
a study can be useful for model reduction, approximation, and disturbance rejection
problems relevant to sampled-data systems, and one such typical problem is the digital
redesign of a continuous-time controller in a continuous-time control system. Indeed,
the pioneering work on the Hankel norm of sampled-data systems [10] was conducted
with this kind of applications in mind, where the past input was taken from L2(−∞, 0)
and the future output was regarded as an element in L2[0,∞) as in the continuous-
time case.

Unfortunately, however, we must point out that a very important issue has been
neglected in that study. First of all, we note that even though the plant itself was
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assumed to be LTI and the controller itself was also assumed to be LTI in the discrete-
time sense, it does not mean that the dynamical characteristics of the sampled-data
systems from the continuous-time external input to the continuous-time controlled
output are LTI. Instead, because of the periodic sampling of signals, a very important
feature of sampled-data systems is that their dynamical characteristics are periodically
time-varying. Hence, unlike in the Hankel operator of LTI systems, it should matter
significantly when to take the time instant that separates the past and future to define
the Hankel operator/norm. Nevertheless, this very important instant was simply
taken as a sampling instant without any specific reasoning in [10]. Even though this
choice significantly facilitates the arguments, it fails to capture the aforementioned
most significant feature of sampled-data systems. Instead, it is reasonable to consider
that any time instant Θ during one sampling interval should be a candidate for the
time instant separating the past and future. The purpose of our paper is exactly
to pursue such a direction for more sophisticated and appropriate arguments on the
Hankel operator/norm of sampled-data systems.

However, we actually tackle a slightly modified version of the problem by consid-
ering the L∞ norm rather than the L2 norm of the future output. In other words,
we study what we call the L∞/L2 Hankel norm of sampled-data systems (and an
operator associated with the L∞/L2 Hankel norm called the L∞/L2 Hankel operator,
whose precise definition will become clear as our arguments proceed). The present
paper confines itself to the L∞/L2 Hankel norm of sampled-data systems because, in
the authors’ view, its treatment is less complicated than the case for dealing with the
L2 norm of the future output (i.e., the L2/L2 Hankel norm as in [10]) when the past
and future are to be separated at an arbitrary intersample instant (as stated in the
introduction). Another reason why we deal with the L∞/L2 Hankel norm is that we
can show its equivalence to the L∞/L2-induced norm [11, 12] as in the continuous-
time case [7]. We will give some further words on the standpoint of our paper later
in section 3.2.

2.2. Lifting treatment of sampled-data systems. Let us consider the inter-
nally stable sampled-data system ΣSD shown in Figure 1 consisting of the continuous-
time LTI generalized plant P and the discrete-time LTI controller Ψ together with
the ideal sampler S and the zero-order hold H operating at sampling period h in a
synchronous fashion. Solid lines and dashed lines are used in this figure to represent
continuous-time signals and discrete-time signals, respectively. We assume that P
and Ψ are described respectively by

P :


dx

dt
= Ax+B1w +B2u,

z = C1x+D12u,

y = C2x,

(3)

Ψ :

{
ψk+1 = AΨψk +BΨyk,

uk = CΨψk +DΨyk,
(4)

where x(t) ∈ Rn, w(t) ∈ Rnw , u(t) ∈ Rnu , z(t) ∈ Rnz , y(t) ∈ Rny , ψk ∈ RnΨ ,
yk = y(kh), and u(t) = uk (kh ≤ t < (k + 1)h).1 It would be worth noting that
we have assumed “D11 = 0” and “D21 = 0” in (3) and that these assumptions

1We remark that this property of u(t) leads to the right continuity of z throughout the paper.
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Fig. 1. Sampled-data system ΣSD.

are natural. This is because, even though the main topic of the present paper is
to study the L∞/L2 Hankel operator/norm of the sampled-data system ΣSD, we are
also partially interested in the relationship between this Hankel norm and the L∞/L2-
induced norm2 of the same ΣSD; the above assumptions are necessary (and sufficient
by the stability of ΣSD) for its L∞/L2-induced norm to be bounded/well-defined (note
that “D21 6= 0” leads to sampling of signals in L2, which is not well-behaved [19]).

As mentioned earlier, the continuous-time input-output behavior from the input w
to the output z in the sampled-data system ΣSD is h-periodic. The lifting technique
[16, 17, 18] is often used to describe the behavior equivalently in a simpler way,
i.e., in an LTI fashion, which is based on the lifted representation of continuous-
time signals. Lifting yields from the continuous-time vector-valued function f(·) the

sequence {f̂k(θ)} of functions on [0, h) given by

f̂k(θ) = f(kh+ θ) (0 ≤ θ < h).(5)

In the following, we assume that kh are the sampling instants. Obviously, this
particularly means that time 0 is also a sampling instant. Thus, recalling the argu-
ments in the preceding subsection, one might question why such an assumption could
be acceptable. However, this is not a problem at all since we may simply refer to the
instant separating the future and past as Θ (rather than 0), where we may assume
Θ ∈ [0, h) without loss of generality. Hence, under the above assumption and with
the lifted representations of w and z, we may simply follow the standard arguments:
the sampled-data system ΣSD can be described by

ΣSD :

{
ξk+1 = Aξk + Bŵk,
ẑk = Cξk +Dŵk,

where we define ξk := [x(kh)T ψTk ]T , the matrix

A =

[
Ad +B2dDΨC2d B2dCΨ

BΨC2d AΨ

]
: Rn+nΨ → Rn+nΨ ,(6)

and the operators

B = JΣB1 : L2[0, h)→ Rn+nΨ ,(7)

C = M1CΣ : Rn+nΨ → L∞[0, h),(8)

D = D11 : L2[0, h)→ L∞[0, h),(9)

2Unlike the case with the Hankel norm, this induced norm is relevant to the input and output
both on [0,∞). Furthermore, it would be worth remarking that this induced norm is not affected by
how time 0 is defined (i.e., whether it is a sampling instant or an intersample instant).
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where

Ad := exp(Ah), B2d :=

∫ h

0

exp(Aθ)B2dθ, C2d := C2,(10)

JΣ :=

[
I
0

]
∈ R(n+nΨ )×n, CΣ :=

[
I 0

DΨC2d CΨ

]
,(11)

B1w =

∫ h

0

exp(A(h− θ))B1w(θ)dθ,(12) (
M1

[
x
u

])
(θ) = M1 exp(A2θ)

[
x
u

]
A2 :=

[
A B2

0 0

]
, M1 :=

[
C1 D12

]
,(13)

(D11w)(θ) =

∫ θ

0

C1 exp(A(θ − τ))B1w(τ)dτ.(14)

Note that the matrix A is stable, i.e., has all its eigenvalues in the open unit disc by
the stability assumption of ΣSD.

3. Quasi L∞/L2 Hankel operators, the L∞/L2 Hankel norm and the
overlap L∞/L2 Hankel operator.

3.1. Quasi L∞/L2 Hankel operators and the L∞/L2 Hankel norm. As
mentioned in the preceding section, we consider separating the past and future at
Θ ∈ [0, h) when we study how to define the Hankel norm of the sampled-data
system ΣSD appropriately. In this case, we consider the (past) input w belonging
to L2(−∞,Θ) and the corresponding (future) output z viewed as an element in
L∞,p[Θ ,∞) (where either p = 2 or p = ∞, depending on the context). We also
refer to the corresponding mapping between w ∈ L2(−∞,Θ) and z ∈ L∞,p[Θ ,∞) as

the quasi L∞/L2 Hankel operator at Θ and denote it by H[Θ]
p . Its norm defined as

‖H[Θ]
p ‖

[Θ]
∞,p/2− := sup

w∈L2(−∞,Θ)

‖z‖[Θ]
∞,p

‖w‖[Θ]
2−

(15)

is called the quasi L∞,p/L2 Hankel norm (or simply the quasi L∞/L2 Hankel norm)
at Θ (under p = 2 or p =∞). Instead of the left-hand side, introducing the shorthand

notation ‖H[Θ]
p ‖ would not be confusing.

In view of the discussions in section 2.1, the standpoint of this paper is to define
the L∞/L2 Hankel norm ‖ΣSD‖H,p of the sampled-data system ΣSD as

‖ΣSD‖H,p := sup
Θ∈[0,h)

‖H[Θ]
p ‖, p = 2,∞.(16)

Remark 3.1. Somewhat relevant arguments for the definition of the “l2/l2 Hankel
norm” for discrete-time periodic systems can be found in [20].

As shown in the appendix, the h-periodicity of the input-output behavior of ΣSD

together with D12 = 0 leads to

‖H[Θ]
p ‖ → ‖H

[0]
p ‖ (Θ → h− 0)(17)

(primarily because z is continuous if D12 = 0). Since the continuity of ‖H[Θ]
p ‖ in

Θ ∈ [0, h) is obvious, the above property immediately implies that supΘ∈[0,h) ‖H
[Θ]
p ‖

is always attained by some Θ = Θ? ∈ [0, h) when D12 = 0. We define H?
p := H[Θ?]

p
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and call it the L∞/L2 Hankel operator of the sampled-data system ΣSD with D12 = 0.
It should be noted, however, that there could exist more than one Θ ∈ [0, h) eligible
for the choice as Θ? and thus H?

p may not actually be unique. Hence, even though the
introduction of this terminology is convenient, it may not be fully rigorous. To avoid
possible ambiguity relevant to the nonuniqueness of Θ?, we introduce the following
terms for the subsequent arguments.

Definition 3.2. For the underlying p = 2 or p = ∞, we say that Θ? ∈ [0, h) is

a critical instant if ‖H[Θ?]
p ‖ = maxΘ∈[0,h) ‖H[Θ]

p ‖. If a critical instant exists, we say
that the L∞/L2 Hankel operator H?

p is well-definable.

When D12 6= 0, a critical Θ? may not exist and thus H?
p may not be well-definable.

The following arguments involve tackling the question about when the critical instants
exist under D12 6= 0 (and the relevant question on how the critical instants Θ? can
be determined), as well as characterizing the L∞/L2 Hankel norm ‖ΣSD‖H,p in such
a way that its computation can be carried out. Note that the L∞/L2 Hankel norm
defined by (16) is entirely meaningful even when the critical instants Θ? do not exist
(i.e., when the L∞/L2 Hankel operator H?

p is not well-definable).
In tackling the above issues, the standpoint of the present paper is that we do not

directly deal with the computation or characterization of ‖H[Θ]
p ‖ for each Θ ∈ [0, h).

Even though such treatment might appear indispensable because of the definition (16)
for the L∞/L2 Hankel norm, this paper develops an alternative method via what we
call the overlap L∞/L2 Hankel operator, which we believe is on one hand somewhat
simpler after all, and more appropriate on the other hand in the theoretical study on
the L∞/L2 Hankel norm as well as the existence of the critical instants Θ? and the
L∞/L2 Hankel operator.

Symbols with ? in the following arguments imply that they are relevant to critical
instants.

Remark 3.3. Although it may somewhat distract the attention of the reader, we
are in a position to make a remark for lack of an alternative and better position. That
is, this remark is devoted to some issues relevant to the introduction of Θ ∈ [0, h),
which is particularly related to the close connection between the L∞/L2 Hankel norm
and the standard H2 norm in continuous-time LTI systems and, moreover, how such
a connection could be inherited by the sampled-data system ΣSD. To clarify the
intention of such a remark, we begin by a series of known facts:

(i-a) In continuous-time LTI systems, the L∞/L2 Hankel norm coincides with the
L∞/L2 induced norm both for p = 2,∞ [7].

(i-b) In MISO continuous-time LTI systems (for which no distinction is necessary
about p = 2 or p =∞), the L∞/L2 induced norm coincides with the standard
H2 norm [7, 8, 9].

(i-c) Hence, for MISO LTI systems, the H2 norm could also be redefined equiva-
lently through the viewpoint of the L∞/L2 Hankel norm (and if one wishes
further, it is straightforward to redefine the H2 norm equivalently in such a
way that multioutput systems are also covered through their decomposition
to MISO subsystems).

To our best knowledge, however, the H2 norm has never been defined on the sampled-
data system ΣSD through the viewpoint of the L∞/L2 Hankel norm. Regarding this
issue, our study obviously motivates us to proceed in a new direction as follows (where
we restrict our attention to the MISO case for simplicity although the multioutput
case can be covered by somewhat modifying the arguments as in the continuous-time
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case). This is because if we regard continuous-time LTI systems as a special case of
ΣSD without the discrete-time controller Ψ , then we readily see that the quasi L∞/L2

Hankel norms are constant for Θ ∈ [0, h) and coincide with the H2 norm:
(ii-a) We may define the L∞/L2 Hankel norm (which is the supremum of the quasi

L∞/L2 Hankel norms for Θ ∈ [0, h)) as a new H2 norm for (MISO) sampled-
data systems.

(ii-b) Alternatively, we may also define the root-mean-square (RMS) of the quasi
L∞/L2 Hankel norms for Θ ∈ [0, h)) as yet another H2 norm for (MISO)
sampled-data systems.

In connection to the above two possible new definitions of the H2 norm for sampled-
data systems, it would be quite interesting to note the following:

(iii-a) The current most standard definition of the H2 norm for the sampled-data
system ΣSD in [14] is somewhat similar to the second new definition above in
its RMS-type of arguments. More precisely, the impulse input at Θ ∈ [0, h)
applied to each input channel is considered, the sum of the squared L2 norms
for the corresponding responses is taken, and then the square root of the
average of the sums taken over all Θ ∈ [0, h) is defined as the H2 norm for
ΣSD in [14].

(iii-b) On the other hand, the first new definition above is similar to another defi-
nition of the H2 norm for ΣSD introduced recently in [12] in its sup-type of
arguments. More precisely, the impulse input at Θ ∈ [0, h) applied to each
input channel is considered, the square root of the sum of the squared L2

norms for the corresponding responses is taken, and then the supremum of
all the resulting values for Θ ∈ [0, h) is defined as an alternative H2 norm
for ΣSD in [12]. This definition might be called the third definition after the
first one that only considered the impulse response for Θ = 0 in [13] and the
second one in [14] (i.e., the standard one stated above).

With all such qualitative similarities, however, we can easily confirm even through
numerical examples of single-input single-output sampled-data systems that the fourth
definition (ii-a) is different from the third one in (iii-b) and the fifth definition (ii-b) is
different from the standard one of (iii-a) in [14]. In particular, all five definitions for
the H2 norm of ΣSD are different, in general (see also some relevant arguments in [12]).
Yet the two new definitions (ii-a) and (ii-b) through the quasi L∞/L2 Hankel norms
for Θ ∈ [0, h) may also capture some important aspects in the studies of sampled-
data systems and thus it may be an interesting topic to pursue such directions as
alternative H2 problems of sampled-data systems.

Remark 3.4. To some readers, the RMS treatment in (ii-b) in the above remark
may sound more appropriate as the L∞/L2 Hankel norm itself than the one through
supremum adopted in this paper. The basic standpoint of the authors, however, is
that the Hankel norm in the continuous-time LTI systems is more like an induced
norm (rather than the H2 norm, which is more like the Frobenius norm and is not
a usual type of induced norm) in the sense that the associated worst input may be
discussed; it is the supremum-type of treatment that allows us to proceed to a similar
direction and thus the study of critical instants and the L∞/L2 Hankel operator.

3.2. Overlap L∞/L2 Hankel operator and its relevance to the L∞/L2

Hankel norm. Before we tackle the problem of characterizing the L∞/L2 Hankel
norm and critical instants (if they exist) of the sampled-data system ΣSD in the
following section, we introduce an infinite-dimensional operator matrix useful for such
a study. For convenience in the overall arguments, we first consider a somewhat
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artificial alternative viewpoint about the “past” and “future,” once putting aside the
fact that the past and future should be separated at an arbitrary instant Θ ∈ [0, h)
after all. That is, we consider for the time being the situation in which the “past”
about the input and the “future” about the output have an overlap by the time
interval [0, h). We call the associated operator the overlap L∞/L2 Hankel operator.
It corresponds to considering the following relation between the lifted representation
{ŵk}0k=−∞ of the “past” input in L2(−∞, h) and that of the “future” output in
L∞[0,∞), i.e., {ẑk}∞k=0, assuming that x(−∞) = 0, ψ−∞ = 0 and w(t) = 0, t ≥ h:

ẑ0
ẑ1
ẑ2
ẑ3
...

 =


D CB CAB CA2B . . .
CB CAB CA2B . . .

CAB CA2B
. . .

CA2B
...

...




ŵ0

ŵ−1
ŵ−2
ŵ−3

...

 .(18)

We denote by M the operator matrix on the right-hand side (which quite naturally
has the so-called Hankel structure).

We make some comments on why we consider this somewhat artificial operator
and why this paper is confined to the L∞/L2 Hankel norm rather than the L2/L2

Hankel norm.
1. As it turns out, we can show that the norm of this overlap L∞/L2 Hankel

operator (which we call the overlap L∞/L2 Hankel norm) coincides with the
L∞/L2 Hankel norm, which is precisely what we are actually interested in
(i.e., defined by (16)).

2. We can further show that the overlap L∞/L2 Hankel norm (and thus the
L∞/L2 Hankel norm, too) equals the L∞/L2-induced norm of ΣSD, where
the computation methods for the induced norm are already known [11, 12].

3. A study on the existence of the critical instants Θ? (or the L∞/L2 Han-
kel operator) through dealing with the overlap L∞/L2 Hankel operator is
possible.

4. All these issues are strongly related to the properties of the L∞ space; in
some mathematically less strict words, the norm of a function in this space
is (almost) determined solely by its instantaneous value at some specific time
instant, and this property is helpful in many aspects. For example, we can
consider a simple case when the overlap L∞/L2 Hankel operator is norm-
attaining (i.e., the worst input exists), and this further helps us study a
condition for the existence of the critical instants Θ?.

5. By the properties of L∞, the overlap L∞/L2 Hankel norm can be consid-
ered by rowwise treatment of the operator matrix M. This leads to a neat
representation for the L∞/L2 Hankel norm, which in turn is also helpful in
determining the critical instants Θ? and the L∞/L2 Hankel operator (if the
former exist and thus the latter is well-definable).

6. The arguments for the L2/L2 Hankel norm are expected to become less neat
because we cannot exploit the above specific properties of the L∞ space. Even
though we believe that somewhat parallel arguments can be developed for the
L2/L2 Hankel norm of sampled-data systems, such arguments will be rather
different from those in this paper and will be treated in our future study.

In the rest of this section, we give more explicit results about some of the first
five items while the remaining items will be discussed later in section 4.
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Let us rewrite (18) as ẑ = Mŵ by defining ŵ := [ŵT0 , ŵ
T
−1, ŵ

T
−2, . . .]

T and ẑ :=
[ẑT0 , ẑ

T
1 , ẑ

T
2 , . . .]

T . We further define their norms by

‖ŵ‖2− :=

(
0∑

k=−∞

‖ŵk‖22

)1/2

, ‖ẑ‖∞,p := sup
k∈N0

‖ẑk‖∞,p (p = 2,∞),(19)

where ‖ŵk‖2 is defined as the L2[0, h) norm of ŵk and ‖ẑk‖∞,p is used in the sense
corresponding to the right-hand side of (1) with the interval of t replaced by [0, h).

We readily see that the norm ‖ŵ‖2− coincides with ‖w‖[h]2− defined in (2), while the

norm ‖ẑ‖∞,p coincides with ‖z‖[0]∞,p defined in (1). This is nothing but the well-
known fact that lifting w and z preserves norms. SinceM is the lifting-based matrix
representation of the overlap L∞/L2 Hankel operator defined as the mapping from
w ∈ L2(−∞, h) to z ∈ L∞,p[0,∞) (where either p = 2 or p =∞ is assumed depending

on the context), which we denote by H[0,h)
p , we readily see that the overlap L∞/L2

Hankel norm is given by

‖H[0,h)
p ‖ = ‖M‖ = sup

w∈L2(−∞,h)

‖ẑ‖∞,p
‖ŵ‖2−

.(20)

In computing ‖M‖, it is crucial to note that each row in M is a shifted and
extended version of the next row. Hence, ‖M‖ coincides with the norm (defined in
an obvious way) of the first row of M, which we denote by F :

F :=
[
D CB CAB CA2B · · ·

]
.(21)

It is quite important to note that the above operator F has actually appeared in a
relevant study [12] on the sampled-data system ΣSD about its induced norm from
L2[0,∞) to L∞,p[0,∞). More precisely, it has been shown that the L∞/L2-induced
norm of ΣSD is also given by the norm of F (under p = 2 or p = ∞). This implies
that the overlap L∞/L2 Hankel norm coincides with the L∞/L2-induced norm. The
computation methods for the latter have been already known [11, 12], which will be
reviewed in section 4 (see Proposition 4.1) after we show the following theorem assert-
ing that the L∞/L2 Hankel norm actually coincides with the overlap L∞/L2 Hankel
norm. Hence, it obviously turns out that we can have a method for computing the
L∞/L2 Hankel norm numerically (by computing the L∞/L2-induced norm instead).
In the standpoint of our paper, however, we are less interested in the numerical com-
putation method itself and are more interested in whether and how the method can
be related to answering our fundamental question about the existence (and charac-
terization) of the critical instants Θ = Θ?.

We first give the following theorem, which we claimed in the above arguments.

Theorem 3.5. The L∞/L2 Hankel norm ‖ΣSD‖H,p satisfies

‖ΣSD‖H,p = ‖H[0,h)
p ‖, p = 2,∞.(22)

Proof. By considering the “inclusion relation” between the domains of H[Θ]
p and

H[0,h)
p as well as that of their co-domains, it is obvious that ‖H[0,h)

p ‖ ≥ ‖H[Θ]
p ‖ ∀Θ ∈

[0, h). Hence,

‖H[0,h)
p ‖ ≥ sup

Θ∈[0,h)
‖H[Θ]

p ‖.(23)
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It also follows from the definition of ‖H[0,h)
p ‖ that for each ε > 0, there exists w ∈

L2(−∞, h) such that ‖w‖[h]2− ≤ 1 and the corresponding output z ∈ L∞,p[0,∞) satisfies

‖z‖[0]∞,p ≥ ‖H[0,h)
p ‖− ε. Hence, there exists Θ such that |z(Θ)|p ≥ ‖H[0,h)

p ‖− ε, where
Θ ∈ [0, h) may be assumed without loss of generality; if such Θ satisfies Θ ≥ h
for w, then it suffices to replace the input w in L2(−∞, h) with another obtained by
advancing the original w by an integer multiple of the sampling period h until the new
Θ belongs to [0, h) (by noting the h-periodicity of the input-output relation of ΣSD).

For notational clarity, let us suppose that an arbitrary ε > 0 is taken and

|z•(Θ•)|p ≥ ‖H[0,h)
p ‖ − ε, Θ• = Θ•(ε) ∈ [0, h),(24)

where w• ∈ L2(−∞, h) and ‖w•‖[h]2− ≤ 1. If we note the causality of ΣSD, we may
assume without loss of generality that w• satisfying the above inequality actually sat-
isfies w•(t) = 0, t ≥ Θ•, i.e., w• ∈ L2(−∞,Θ•). If we also regard the corresponding
output z• as an element in L∞,p[Θ

•,−∞) accordingly, it is equivalent to considering
the quasi L∞,p/L2 Hankel operator at Θ•. Since z• is right continuous, it follows

from the definition of ‖H[Θ•]
p ‖ that ‖H[Θ•]

p ‖ ≥ |z•(Θ•)|p, which further implies

‖H[Θ•]
p ‖ ≥ ‖H[0,h)

p ‖ − ε(25)

by (24). Since ε > 0 is arbitrary, we see from (23) that

sup
Θ∈[0,h)

‖H[Θ]
p ‖ = ‖H[0,h)

p ‖.(26)

This completes the proof by the definition (16) of the L∞/L2 Hankel norm.

The following result, which is an extension of the parallel results for continuous-
time LTI systems [7], is a direct consequence from what was discussed before the
above theorem.

Corollary 3.6. The L∞/L2 Hankel norm ‖ΣSD‖H,p coincides with the L∞/L2-
induced norm ‖ΣSD‖L∞,p/L2

for p = 2,∞.

Remark 3.7. We can readily show that the norm of a “generalized overlap Hankel
operator” of any sort such that the corresponding “past” and “future” intervals have
an overlap that contains a critical instant is also equal to the induced norm. This
fact can be regarded as an extension of a parallel result in [7] for continuous-time LTI
systems to sampled-data systems, which are periodic.

3.3. Preliminary existence study on the critical instants Θ? and the
L∞/L2 Hankel operator. Very roughly speaking, the arguments in the above sub-
section indicate that a critical instant Θ = Θ? would be given by limε→+0 Θ•(ε).
This paper aims at providing somewhat more rigorous arguments that can be devel-
oped only through the definitions of the L∞/L2 Hankel norm, the critical instants
Θ?, and the L∞/L2 Hankel operator; we will return to a seemingly similar topic in
section 4 after we provide an explicit computation method for the L∞/L2 Hankel
norm in Proposition 4.1, but the standpoints here and there are entirely different. As
mentioned above, we first confine ourselves to the existence study of the critical in-
stants Θ? (or the L∞/L2 Hankel operator) from a somewhat theoretical aspect rather
than from an aspect of numerically characterizing the critical instants Θ? (if they
exist).
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For this purpose, we first proceed with our arguments under the assumption that
the overlap L∞/L2 Hankel operator is norm-attaining (i.e., it has the worst input

denoted by w• ∈ L2(−∞, h)). Without loss of generality, we assume ‖w•‖[h]2− = 1,

in which case the corresponding output z• satisfies ‖z•‖[0]∞,p = ‖H[0,h)
p ‖. We further

consider the case when this z• is also norm-attaining, by which we mean that there

exists Θ• ≥ 0 such that ‖z•‖[0]∞,p = |z•(Θ•)|p, i.e.,

|z•(Θ•)|p = ‖H[0,h)
p ‖,(27)

where we may assume without loss of generality that Θ• ∈ [0, h) (for the same
reasoning as before, which also shows that w• satisfying this equality may actu-

ally be assumed to belong to L2(−∞,Θ•) and satisfy ‖w•‖[Θ
•]

2− = 1 without loss of

generality). Since z• is right continuous, it follows that ‖H[Θ•]
p ‖ ≥ |z•(Θ•)|p and

thus ‖H[Θ•]
p ‖ ≥ ‖H[0,h)

p ‖ by (27). This together with (23) implies that ‖H[0,h)
p ‖ =

maxΘ∈[0,h) ‖H[Θ]
p ‖ = ‖H[Θ•]

p ‖ under the two assumptions in the above arguments.
Summarizing the above leads to the following consequences about the existence of

a critical instant Θ = Θ? (or whether the L∞/L2 Hankel operator is well-definable).
(i) If the overlap L∞/L2 Hankel operator is norm-attaining and if the output

for the corresponding worst input is norm-attaining, then the L∞/L2 Hankel
operator is well-definable.

(ii) Under the assumptions in (i), a critical instant Θ = Θ? is given by Θ•, where
Θ• is determined from the output of the overlap L∞/L2 Hankel operator for
its worst input through (27).

In connection with the above consequences, we offer the following lemma.

Lemma 3.8. If a critical instant Θ = Θ? exists for the underlying p, then the
overlap L∞/L2 Hankel operator H[0,h)

p is norm-attaining.

What this lemma implies is that the first assumption in (i) above is actually a
necessary condition for the existence of a critical instant Θ? (or equivalently, the well-
definablily of the L∞/L2 Hankel operator). In other words, as long as our interest
lies in discussing when the critical instants Θ? do exist, the first assumption in (i) by
no means leads to loss of generality. The proof of this lemma is given below.

Proof. It suffices to show that assuming the existence of a critical instant Θ?

and assuming that H[0,h)
p is not norm-attaining lead to contradiction. Indeed, if

H[0,h)
p is not norm-attaining, the output z for its input w ∈ L2(−∞, h) satisfies

‖z‖[0]∞,p < ‖H[0,h)
p ‖ whenever ‖w‖[h]2− ≤ 1. By arguments similar to what we have

repeatedly used, it then follows for every Θ ∈ [0, h) that the output z viewed as

an element of L∞,p[Θ ,∞) satisfies ‖z‖[Θ]
∞,p < ‖H[0,h)

p ‖ for every w ∈ L2(−∞,Θ) with

‖w‖[Θ]
2− ≤ 1. Since this is also true for every critical instant Θ?, it implies from (16) and

(22) that H[Θ?]
p is not norm-attaining. This consequence, however, contradicts the fact

that H[Θ?]
p is a bounded finite-rank operator represented through [x(Θ?)T , uT0 , ξ

T
0 ]T as

the composition of a finite-rank operator L2(−∞,Θ?)→ Rn+nu+nΨ and a finite-rank
operator Rn+nu+nΨ → L∞[Θ?,∞). This completes the proof.

The implication of the above theoretical arguments will become clearer in the
following section, where a numerical procedure for the L∞/L2-induced norm of ΣSD

[12] is reviewed (which is nothing but a computation method for the L∞/L2 Hankel
norm by Corollary 3.6) and is related to determining the critical instants Θ? and the
L∞/L2 Hankel operator (if the former exist and thus the latter is well-definable).
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4. Existence study on the critical instants Θ? and their characteri-
zation through a computation method of the L∞/L2 Hankel norm. By
Corollary 3.6, the L∞/L2 Hankel norm ‖ΣSD‖H,p can be computed by applying the
computation method for the L∞,p/L2-induced norm in [12]. This section is devoted
to discussing how this computation method can be used in combination with our
preceding arguments to study when the critical instants Θ = Θ? exist and how they
(and thus the L∞/L2 Hankel operator) can be determined if they exist.

4.1. Computation method of the L∞/L2 Hankel norm and its inter-
pretation. We begin by reviewing the computation method in [12] for the L∞,p/L2-
induced norm (and thus the L∞/L2 Hankel norm ‖ΣSD‖H,p) given as follows, where
µp(·) denotes the maximum eigenvalue and maximum diagonal entry of a positive
semidefinite symmetric matrix for p = 2 and p =∞, respectively.

Proposition 4.1. The L∞/L2 Hankel norm ‖ΣSD‖H,p defined by (16) is given by

‖ΣSD‖H,p = sup
θ∈[0,h)

µ1/2
p (F (θ)), p = 2,∞,(28)

where the matrix F (θ) is defined by

F (θ) :=

∫ θ

0

Dθ(τ)DT
θ (τ)dτ +

∞∑
k=0

∫ h

0

(CθAkBh(τ))(CθAkBh(τ))T dτ(29)

with the matrix functions

Bh(τ) = JΣ exp(A(h− τ))B1, Dθ(τ) = C1 exp(A(θ − τ))B11(θ − τ)(30)

(with 1(·) being the unit step function) and the matrix

Cθ = M1 exp(A2θ)CΣ .(31)

An explicit computation method for the infinite series (29) based on a Lyapunov
equation is available but we do not touch on further details because this paper is not
quite interested in the numerical computation itself. Instead, we only remark that the
above proposition3 was a consequence—under appropriate rephrased interpretation to
match the present situation on the treatment of the overlap L∞/L2 Hankel operator
and the L∞/L2 Hankel norm—of considering the maximization of |z(θ)|p with respect
to w ∈ L2(−∞, h) (or w ∈ L2(−∞, θ), equivalently) for each θ ∈ [0, h). We suppress
reviewing all such arguments because we do not need any details at all. In fact, we
simply state that a more precise description of the above interpretation is that

µ1/2
p (F (θ)) = sup

w∈L2(−∞,θ)

|z(θ)|p
‖w‖[θ]2−

, p = 2,∞.(32)

Note that no time instant separating the past and future is relevant to the above
arguments, which is why the symbol θ is used rather than Θ . Another issue that
might be worth stating is that if ΣSD is actually a continuous-time LTI system as a
special case, then F (θ) is a constant function.

3It was derived in the context of the L∞/L2-induced norm of ΣSD through the use of the triangle
inequality and the continuous-time/discrete-time Cauchy–Schwarz inequalities.
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One might wonder from (16) and (28) whether µ
1/2
p (F (θ)) = ‖H[Θ]

p ‖ if θ = Θ .
However, this is not the case, in general. In fact, by regarding θ as the instant
separating the past and future, it is easy to see from (32) that

‖H[θ]
p ‖ ≥ µ1/2

p (F (θ)) ∀θ ∈ [0, h)(33)

because the output z of H[θ]
p is right continuous and thus satisfies ‖z‖[θ]∞,p ≥ |z(θ)|p.

The inequality (33) plays a key role in the derivation of the following theorem, which
holds for p = 2 as well as p =∞.

Theorem 4.2. For the underlying p = 2 or p =∞, suppose that µ
1/2
p (F (θ)), θ ∈

[0, h), is maximum-attaining (in the sense that there exists θ? ∈ [0, h) such that
µp(F (θ?)) = maxθ∈[0,h) µp(F (θ))). For each such θ?, let Θ? = θ?. Then, Θ? is a
critical instant relevant to ‖ΣSD‖H,p. In other words, the above hypothesis ensures
that the L∞/L2 Hankel operator H?

p is well-definable and the quasi L∞/L2 Hankel

operator H[Θ?]
p is indeed one possible choice for the L∞/L2 Hankel operator.

Proof. By the assumption on θ?, (28) implies that ‖ΣSD‖H,p = µ
1/2
p (F (θ?)). It

then follows that equality must hold in (33) when θ = θ?; this is because otherwise

we are led to ‖H[θ?]
p ‖ > supθ∈[0,h) ‖H

[θ]
p ‖ by (16), which is an obvious contradiction.

Hence, we have ‖H[θ?]
p ‖ = µ

1/2
p (F (θ?)) = ‖ΣSD‖H,p by (28). This completes the

proof.

The above theorem implies that under its hypothesis, the L∞/L2 Hankel operator
H?
p is well-definable and a critical instant Θ = Θ? can be detected through the curve

of µ
1/2
p (F (θ)), θ ∈ [0, h). We can confirm the following result (already stated in sec-

tion 3.1 in an informal fashion by referring to the completely independent arguments
in the appendix) by noting the continuity of F (θ) on [0, h); we can show through
manipulating (29) that limθ→h−0 F (θ) = F (0) if D12 = 0, whose details are omitted,

and thus µ
1/2
p (F (θ)), θ ∈ [0, h), is maximum-attaining then.

Corollary 4.3. The L∞/L2 Hankel operator H?
p is well-definable if D12 = 0

(p = 2,∞).

4.2. Further study on the existence of the critical instants Θ? and
their detection through µ1/2

p (F (θ)). The arguments in the preceding subsection

show that if µ
1/2
p (F (θ)) is maximum-attaining, the L∞/L2 Hankel operator H?

p is
well-definable and one of (or a subset of) the critical instants Θ? will be reflected

on the curve of µ
1/2
p (F (θ)) as arg maxθ∈[0,h) µ

1/2
p (F (θ)). However, it is not clear

whether µ
1/2
p (F (θ)) is maximum-attaining whenever the critical instants Θ? exist and

thus the L∞/L2 Hankel operator H?
p is well-definable, or alternatively, whether every

critical instant Θ?, if it exists, can always be detected as arg maxθ∈[0,h) µ
1/2
p (F (θ)).

This subsection is devoted to arguments relevant to such issues. To this end, our
preliminary theoretical arguments in section 3.3, which were completely indifferent to

the quantity µ
1/2
p (F (θ)), will now be helpful.

We begin by the following assumption.

Assumption 4.4. A critical instant exists for the underlying p. The output z of
the associated L∞/L2 Hankel operator H?

p for its worst input is norm-attaining (i.e.,
there exists t no smaller than the critical instant such that the norm of z equals
|z(t)|p).
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Remark 4.5. The existence of the worst input in the above assumption has been
ensured in the proof of Lemma 3.8.

Let us recall the arguments in section 3.3 under Assumption 4.4 (which ensures
by Lemma 3.8 and (26) that the assumptions in section 3.3 are satisfied). Then, by
(22), it follows from (27) that

|z•(Θ•)|p = ‖ΣSD‖H,p,(34)

where z• is the output for w• ∈ L2(−∞,Θ•) with ‖w•‖[Θ
•]

2− = 1 in the arguments of
section 3.3. On the other hand, if we consider the input w other than w• (and the
corresponding output z for the input w), we see from (32) that

µ1/2
p (F (Θ•)) ≥ |z•(Θ•)|p.(35)

Hence, by (34), we have

µ1/2
p (F (Θ•)) ≥ ‖ΣSD‖H,p.(36)

This together with (28) implies that if we let θ? = Θ•, then µ
1/2
p (F (θ?)) must coincide

with ‖ΣSD‖H,p, and that the right-hand side of (28) is attained as the maximum over
θ ∈ [0, h) (at θ = θ?). As a side remark, it is obvious from Theorem 4.2 that θ? is a

critical instant (i.e., H[θ?]
p is one possible choice for the L∞/L2 Hankel operator H?

p).

Remark 4.6. Let Θ? be a critical instant. If one could establish the claim that
the output z? of H[Θ?]

p for its worst input attains its norm at Θ? (i.e., the claim

that ‖z?‖[Θ
?]

∞,p = |z?(Θ?)|p), then we can see that Θ• in (34) is given by Θ?, which in

turn would immediately lead to the consequence that the maximum of µ
1/2
p (F (θ)) is

attained at θ = Θ?. Unfortunately, however, it is an open question at the moment
whether one can indeed establish the above claim (even though we can easily see
that Θ• ≥ Θ?). Thus, the preceding arguments do not necessarily imply that every

critical instant is reflected on the curve of µ
1/2
p (F (θ)), θ ∈ [0, h), as a maximum-

attaining point. More precisely, the arguments only show that existence of a critical
instant ensures that at least one of the critical instants is reflected on the curve of
µ
1/2
p (F (θ)), θ ∈ [0, h) as a maximum-attaining point. The above possible claim is

actually closely related with how strong the hypothesis would be in Theorem 4.9
given below.

Summarizing the above arguments under Assumption 4.4 leads to the following
theorem, which corresponds to a sort of converse for Theorem 4.2 and gives a suf-
ficient condition for at least one critical instant Θ? to be reflected on the curve of
µ
1/2
p (F (θ)), θ ∈ [0, h) as a maximum-attaining point.

Theorem 4.7. If Assumption 4.4 is satisfied in the sampled-data system ΣSD,

then µ
1/2
p (F (θ)), θ ∈ [0, h) is maximum-attaining (i.e., there exists θ? ∈ [0, h) such

that µ
1/2
p (F (θ?)) = maxθ∈[0,h) µ

1/2
p (F (θ))). Every such θ? is a critical instant.

Remark 4.8. (i) A sufficient condition for Assumption 4.4 to be satisfied is that
D12 = 0. This is because the L∞/L2 Hankel operator H?

p is ensured to be well-
definable by Corollary 4.3 in that case, and the output for its worst input (ensured
to exist; recall Remark 4.5) is norm-attaining then; to see the latter, note that the
output z of the sampled-data system ΣSD is always continuous if D12 = 0 and that
the output of H?

p tends to 0 as t→∞ by the internal stability of ΣSD. (ii) However,
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asserting as a corollary to the above theorem the fact that µ
1/2
p (F (θ)), θ ∈ [0, h),

is maximum-attaining if D12 = 0 is inappropriate because such reasoning leads to
circular arguments. This is because the maximum-attaining property has already been
used regardless of the two possible standpoints as to the derivation of Corollary 4.3
(recall the descriptions preceding the corollary). (iii) Aside from this, however, it is
obvious from Theorem 4.2 that if D12 = 0, then a critical instant Θ? can be detected

from the curve of µ
1/2
p (F (θ)), θ ∈ [0, h), as arg maxθ∈[0,h) µ

1/2
p (F (θ)).

We can also show the following theorem, which does not depend on Assump-
tion 4.4.

Theorem 4.9. For the underlying p, suppose that the sampled-data system ΣSD

has a critical instant Θ? but that no Θ ∈ [0, h) exists such that every Θ ∈ [Θ , h) is a

critical instant. Then, µ
1/2
p (F (θ)), θ ∈ [0, h), is maximum-attaining, where every θ?

such that µ
1/2
p (F (θ?)) = maxθ∈[0,h) µ

1/2
p (F (θ)) is a critical instant.

Proof. In view of Theorem 4.7, it suffices to consider the case when Assumption
4.4 is not satisfied. Under the hypothesis of the present theorem, this is equivalent
to assuming that for each H?

p corresponding to a critical instant Θ?, the output z?

for its worst input w? is not norm-attaining. Here, by the internal stability of ΣSD,
the output z? can fail to be norm-attaining only in connection with its discontinuity.
Since such discontinuity can occur only at sampling instants, it follows that we have

only to consider the case when ‖z?‖[Θ
?]

∞,p = maxk∈N limt→kh−0 |z?(t)|p (and the right-
hand side exceeds |z?(Θ?)|p). Now, for each Θ ∈ [Θ?, h), it is obvious that the worst
input w? ∈ L2(−∞,Θ?) for H?

p viewed as an element in L2(−∞,Θ) yields the output

z identical to z? on [Θ ,∞) if it is applied to H[Θ]
p . Since kh > Θ , k ∈ N, it follows

that

‖H[Θ]
p ‖ ≥ max

k∈N
lim

t→kh−0
|z(t)|p/‖w‖[Θ]

2−

= max
k∈N

lim
t→kh−0

|z?(t)|p/‖w?‖[Θ
?]

2−

= ‖ΣSD‖H,p.(37)

This implies ‖H[Θ]
p ‖ = ‖ΣSD‖H,p,∀Θ ∈ [Θ?, h) by (16), which contradicts the hypoth-

esis of the theorem. This completes the proof of the first assertion, while the second
assertion follows from Theorem 4.2.

In view of Theorem 4.2, we readily obtain the following corollary for p = 2,∞.

Corollary 4.10. Suppose that the sampled-data system ΣSD has either finitely

or countably many critical instants for the underlying p. Then, µ
1/2
p (F (θ)), θ ∈ [0, h),

is maximum-attaining, where every θ? such that µ
1/2
p (F (θ?)) = maxθ∈[0,h) µ

1/2
p (F (θ))

is a critical instant. In particular, if ΣSD has a unique critical instant Θ? for

the underlying p, then there exists a unique θ? ∈ [0, h) such that µ
1/2
p (F (θ?)) =

maxθ∈[0,h) µ
1/2
p (F (θ)), where θ? = Θ?.

5. Numerical example. This section gives a numerical example for the argu-
ments developed in this paper. Let us consider the sampled-data system ΣSD consist-
ing of P given by
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Table 1
Numerical results for ‖H?

p‖ = ‖H[Θ?]
p ‖ and the critical instant Θ? together with ‖H[0]

p ‖.

p = 2 p =∞

‖H?
p‖ = ‖H[Θ?]

p ‖ 4.3016 3.7870
Θ? 0.806 0.728

‖H[0]
p ‖ 4.0629 3.5644

A =

[
−3 2
−4 2

]
, B1 =

[
1 0.5
−1 0

]
, B2 =

[
0
−1

]
,

C1 =

[
1 0
0 1

]
, C2 =

[
1 0

]
, D12 =

[
0
0

]
(38)

and Ψ given by

AΨ =

[
−4.0534 4.0721
−3.0738 3.0880

]
, BΨ =

[
0.0570
0.0432

]
,

CΨ =
[
−0.6349 0.6378

]
, DΨ = −0.2374,(39)

where the sampling period is h = 2.

The computation through (29) shows that µ
1/2
p (F (θ)), θ ∈ [0, h), is maximum-

attaining for both p = 2 and p = ∞. More precisely, the maximum is attained by a
unique θ = θ? ∈ [0, h), where θ? = 0.806 for p = 2 and θ? = 0.728. By Theorem 4.2,
each θ? is a critical instant for the associated p, and the quasi L∞/L2 Hankel norm

at Θ? = θ? is as shown in Table 1 (which is nothing but the value of µ
1/2
p (F (θ?)) by

Proposition 4.1). This table also shows the value of ‖H[0]
p ‖ for each p, which can be

computed as supθ∈[0,h) µ
1/2
p (F0(θ)), where F0(θ) is defined as the second term in the

right-hand side of (29). We skip the details for the derivation of this representation,

but we remark that ‖H[0]
p ‖ equals the norm of the operator obtained by removing D

from F in (21). This should not be hard to see because ŵ0 becomes irrelevant (in
other words, it becomes 0) when we consider the quasi L∞/L2 Hankel operator at
Θ = 0. This is why the first term on the right-hand side of (29) should be dropped

in the computation of ‖H[0]
p ‖.

We see from Table 1 that (i) the L∞/L2 Hankel norms are different for p = 2

and p =∞, and (ii) ‖H?
p‖ > ‖H

[0]
p ‖ and thus Θ = 0 is not a critical instant for each

p (i.e., Θ? ∈ (0, h)). The second observation clearly indicates that the standpoint of
this paper taking an arbitrary Θ ∈ [0, h) as a possible instant for separating the past
and future is indeed adequate in the definition of the L∞/L2 Hankel operator/norm
of sampled-data systems (which is believed to be the case also in the L2/L2 Hankel
operator/norm studied in [10]).

6. Conclusion. This paper introduced appropriate definitions of the Hankel
operator/norm of sampled-data systems with their periodic input-output character-
istics taken into account. That is, we took the standpoint that the past and fu-
ture should be separated at an appropriate instant in a sampling interval when we
are to consider the worst effect of the past input on the future output. Theoret-
ical results were provided for the characterization of the Hankel operator/norm of
sampled-data systems together with an associated numerical computation method
for the L∞/L2 Hankel norm. More importantly, the relevance of this computation
method to determining the worst instant at which the past and future are separated
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as well as the L∞/L2 Hankel operator (if they are well-definable) was also discussed.
Finally, a numerical example was studied, by which the validity of the standpoint of
this paper was confirmed.

Regarding possible extension of the arguments in this paper, it is straightforward
to extend the results in section 3 to the quasi L∞/L∞ Hankel norm/operator, the
L∞/L∞ Hankel norm/operator, and the overlap L∞/L∞ Hankel operator norm in
an entirely parallel fashion (as long as “D11 = 0” and “D21 = 0”). However, it
would be a challenging issue to study whether parallel arguments can be developed
also for the arguments in section 4 in the L∞/L∞ setting. This can be explained
as follows: the L∞ induced norm analysis [21, 22] is a rather involved problem and
is much harder than the H2 norm analysis, for which closed-form representations
are well-known not only for continuous-time systems but also for LTI sampled-data
systems (e.g., [12, 14]). As discussed in Remark 3.4, the H2 norm is closely related
to the L∞/L2 induced norm and thus the L∞/L2 Hankel norm too, and such a
connection seems to be deeply related to the fact that the L∞/L2 Hankel norm is
also numerically computable through F (θ) in (29), which played a central role in the
arguments in section 4. However, even with our recent renewed interest [23, 24, 25], no
closed-form expression for the L∞ induced norm is available and only asymptotically
exact approximate computation methods are known. This circumstance prohibits us
from developing parallel arguments in a straightforward fashion. It is nevertheless
believed that somewhat parallel arguments can be developed for the usual L2/L2

Hankel operator/norm under similar and thus more appropriate treatment than that
in [10], but the details will be reported elsewhere.

On the other hand, this paper did not deal with the computation/characterization

of the quasi L∞/L2 Hankel norm at Θ (i.e., ‖H[Θ]
p ‖) for each Θ ∈ [0, h) itself, even

though the L∞/L2 Hankel norm is defined through ‖H[Θ]
p ‖ as in (16), where Θ is

the instant at which the past and future are separated. This is because we devel-
oped an alternative and indirect method for the computation of the L∞/L2 Hankel
norm through what we call the overlap L∞/L2 Hankel norm (whose norm is shown
to coincide with the L∞/L2-induced norm, for which we already have a numerical

computation method [12]). Nonetheless, characterizing ‖H[Θ]
p ‖ for each Θ ∈ [0, h)

would be meaningful and important, and it is indeed possible [26]. However, we do
not touch on this issue in this paper because it is mostly a numerical computation
issue and its arguments have quite a different characteristic in the sense that they will
be more like a continuation of the study in [12] rather than further enrichment of the
present study tackling the theoretical interests in characterizing the worst instant for
separating the past and future.

Appendix A. Proof of (17) under D12 = 0. This appendix is devoted to the
derivation of (17) for p = 2 and p = ∞. Thus, we assume that D12 = 0 throughout

this appendix and note that H[Θ]
p can readily be defined also for Θ ∈ [−h, 0). Hence,

by h-periodicity, we aim at establishing the following instead:

‖H[Θ]
p ‖ → ‖H

[0]
p ‖ (Θ → −0).(40)

To this end, we begin by evaluating |x(0)− x(θ)|p for θ ∈ [−h, 0) as follows.

Lemma A.1. Let x(−∞) = 0, ψ−∞ = 0, w ∈ L2(−∞, 0), and ‖w‖[0]2− ≤ 1. Then,
for each ε > 0, there exists Θ ∈ [−h, 0) independent of w such that the corresponding
x(t) in the sampled-data system ΣSD satisfies |x(0)−x(θ)|p ≤ ε ∀θ ∈ [Θ , 0) (p = 2,∞).
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Proof. Since | · |p, p = 2,∞, are equivalent norms due to finite-dimensionality, it
suffices to consider only the case of p = 2; hence, | · |2 together with the associated
induced matrix norm will be denoted simply by | · | in this proof. For notational
clarity, we denote the corresponding x(−h) and u(−h) in ΣSD by xw(−h) and uw(−h),
respectively. Since

x(θ) = exp(A(θ + h))xw(−h) +

∫ θ

−h
exp(A(θ − t))B1w(t)dt

+

∫ θ

−h
exp(A(θ − t))B2dtuw(−h)(41)

for θ ∈ [−h, 0), we have

x(0)− x(θ) = (I − exp(Aθ)) exp(Ah)xw(−h)

+

∫ 0

θ

exp(−At)B1w(t)dt+ (I − exp(Aθ))

∫ θ

−h
exp(−At)B1w(t)dt

+

∫ 0

θ

exp(−At)B2dtuw(−h) + (I − exp(Aθ))

∫ θ

−h
exp(−At)B2dtuw(−h).(42)

Hence,

|x(0)− x(θ)| ≤ |I − exp(Aθ)| · | exp(Ah)| · |xw(−h)|

+

∣∣∣∣ ∫ 0

θ

exp(−At)B1w(t)dt

∣∣∣∣+ |I − exp(Aθ)| ·
∣∣∣∣ ∫ θ

−h
exp(−At)B1w(t)dt

∣∣∣∣
+

∣∣∣∣ ∫ 0

θ

exp(−At)B2dt

∣∣∣∣ · |uw(−h)

∣∣∣∣
+ |I − exp(Aθ)| ·

∣∣∣∣ ∫ θ

−h
exp(−At)B2dt

∣∣∣∣ · |uw(−h)|,(43)

where ∣∣∣∣ ∫ 0

θ

exp(−At)B1w(t)dt

∣∣∣∣ ≤ (∫ 0

θ

| exp(−At)B1|2dt
)1/2

→ 0 (θ → −0)(44)

by the Cauchy–Schwarz inequality. Similarly, we readily see that |
∫ θ
−h exp(−At)

B1w(t)dt| and |
∫ θ
−h exp(−At)B2dt| have upper bounds independent of w ∈ L2(−∞, 0),

‖w‖[0]2− ≤ 1, and θ, while limθ→−0 |
∫ 0

θ
exp(−At)B2dt| = 0 is obvious. Since xw(−h)

and uw(−h) are uniformly bounded for w ∈ L2(−∞, 0), ‖w‖[0]2− ≤ 1, by the stability
of ΣSD, this completes the proof.

We use the above lemma to establish the following results.

Proposition A.2. ‖H[Θ]
p ‖,Θ ∈ [−h, 0] is upper semicontinuous at Θ = 0 for

p = 2,∞ if D12 = 0:

lim sup
Θ→−0

‖H[Θ]
p ‖ ≤ ‖H

[0]
p ‖.(45)

Proposition A.3. ‖H[Θ]
p ‖,Θ ∈ [−h, 0] is lower semicontinuous at Θ = 0 for

p = 2,∞ if D12 = 0:

lim inf
Θ→−0

‖H[Θ]
p ‖ ≥ ‖H

[0]
p ‖.(46)
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Hence, we readily have the following result, establishing (40).

Theorem A.4. ‖H[Θ]
p ‖,Θ ∈ [−h, 0] is continuous at Θ = 0 for p = 2,∞ if

D12 = 0.

Our remaining task is to prove the above two propositions. We begin by introduc-
ing a slightly modified notion of the quasi L∞/L2 Hankel norm at Θ (by modifying
(15)). More precisely, we introduce the norm notation

‖Hp‖[Θ,∞)/(−∞,0) := sup
w∈L2(−∞,0)

‖z‖[Θ]
∞,p

‖w‖[0]2−

(47)

whose precise meanings (particularly about the left-hand side) will be described in the
following; we begin by recalling that the left-hand side of (15) is also denoted simply

by ‖H[Θ]
p ‖ as noted below this equation, but let us further consider introducing yet

another equivalent notation ‖Hp‖[Θ]. The idea behind this alternative notation is to

avoid possible confusion stemming from the fact that the norm symbol ‖ · ‖ in ‖H[Θ]
p ‖

actually depends on the quantity inside it; in fact, the value of Θ in H[Θ]
p is what

determines the norm ‖ · ‖ precisely. Instead of this situation, the new alternative
notation ‖Hp‖[Θ] is meant for being quite specific with respect to the choice of the
norm, but with the sacrifice of introducing possible ambiguity instead about what the
operator Hp means. The standpoint in the notation ‖Hp‖[Θ], however, is that Hp is
regarded as a kind of Hankel operator in which the “past” and “future” are regarded
to have a point of contact only at the instant Θ . That is, the norm symbol ‖ · ‖[Θ]

immediately implies that ‖Hp‖[Θ] is actually shorthand notation for ‖H[Θ]
p ‖[Θ], the

norm of the quasi L∞/L2 operator H[Θ]
p . The notation on the left-hand side of (47) is

meant for a similar sense, where Hp therein is regarded as a kind of Hankel operator4

in which the “past” is defined as the interval (−∞, 0), while the “future” is defined
as the interval [Θ ,∞). Considering somewhat different Hankel type of operators
simultaneously is convenient in the following arguments, where all these operators are
simply denoted by Hp whose distinctions will be made by the different norm symbols
surrounding them.

Proof of Proposition A.2. Since (−∞,Θ) ⊂ (−∞, 0) for Θ ∈ [−h, 0), it is obvious
that

‖H[Θ]
p ‖ = ‖Hp‖[Θ] = ‖Hp‖[Θ,∞)/(−∞,Θ) ≤ ‖Hp‖[Θ,∞)/(−∞,0) ∀Θ ∈ [−h, 0).(48)

Here, we aim at comparing the rightmost ‖Hp‖[Θ,∞)/(−∞,0) with ‖H[0]
p ‖ = ‖Hp‖[0] =

‖Hp‖[0,∞)/(−∞,0). Since the difference comes only from that for the intervals on
which the outputs are evaluated, it is useful to evaluate |z(θ)|p (θ ∈ [Θ , 0)) under
w ∈ L2(−∞, 0) and ‖w‖2− ≤ 1, where |C1|p denotes the norm of the matrix C1

induced from the vector p-norm. We readily have

|z(θ)|p = |C1x(θ)|p
≤ |C1x(0)|p + |C1(x(θ)− x(0))|p
≤ |z(0)|p + |C1|pε (∀θ ∈ [Θ , 0)).(49)

4If Θ = −h, the operator is essentially nothing but the overlap L∞/L2 Hankel operator intro-
duced in section 3.2.
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Note that Θ ∈ [−h, 0) (dependent on ε) satisfying the last inequality is ensured to
exist by Lemma A.1. This inequality leads to

‖Hp‖[Θ,∞)/(−∞,0) = max
(
‖Hp‖[Θ,0)/(−∞,0), ‖Hp‖[0,∞)/(−∞,0)

)
= max

(
sup

w∈L2(−∞,0)

supθ∈[Θ,0) |z(θ)|p
‖w‖[0]2−

, ‖Hp‖[0]
)

≤ max

(
|C1|pε+ sup

w∈L2(−∞,0)

|z(0)|p
‖w‖[0]2−

, ‖Hp‖[0]
)

≤ max
(
|C1|pε+ ‖Hp‖[0], ‖Hp‖[0]

)
= |C1|pε+ ‖H[0]

p ‖.(50)

Hence, by (48),

‖H[Θ]
p ‖ ≤ |C1|pε+ ‖H[0]

p ‖.(51)

Recall that Θ ∈ [−h, 0) in this inequality is such that (49) holds, whose existence was
ensured by Lemma A.1. Hence, it is obvious that (51) holds for every Θ ∈ [Θ0, 0) for
some Θ0 = Θ0(ε) ∈ [−h, 0). This immediately implies that

lim sup
Θ→−0

‖H[Θ]
p ‖ ≤ ‖H

[0]
p ‖+ |C1|pε.(52)

Since ε > 0 is arbitrary, we have established the assertion of the proposition.

Proof of Proposition A.3. Let w? ∈ L2(−∞, 0) be the worst input5 for the quasi

L∞/L2 Hankel operator H[0]
p at Θ = 0 attaining its norm ‖H[0]

p ‖ such that ‖w?‖[0]2− =
1. Let us take an arbitrary θ ∈ [−h, 0) and let us define w?θ ∈ L2(−∞, θ) by the

truncation of w? after t = θ (i.e., w?θ(t) = 0, t ∈ [θ, 0)); note that ‖w?θ‖
[θ]
2− ≤ 1. Let

x(−∞) = 0 and ψ−∞ = 0 and let us denote x(0) in the sampled-data system ΣSD

for the input w? by x?(0) and that for the input w?θ by x?θ(0). Then, by arguments
similar to Lemma A.1, we can establish the following claim for p = 2,∞:

For each ε > 0, there exists Θ ∈ [−h, 0) such that |x?(0)− x?θ(0)|p ≤
ε ∀θ ∈ [Θ , 0).

Note that |x?(0) − x?θ(0)|p ≤ ε implies that |u?0 − u?0θ|p ≤ |DΨC2|pε by the third
equation of (3) and the second equation of (4), where u?0 and u?0θ denote u0 under the
input w? and the input w?θ , respectively.

Let us define T ≥ 0 by

‖H[0]
p w

?‖[0]∞,p = |(H[0]
p w

?)(T )|p,(53)

which is well-defined6 by the continuity of z ensured by D12 = 0 together with stability
of ΣSD ensuring z(t)→ 0 as t→∞. Since D12 = 0, we have z(T ) = C1 exp(AT )x(0)+

GTu0 when w(t) = 0, t ≥ 0, where GT := C1

∫ T
0

exp(A(T − t))B2dt. Hence, it follows

from ‖w?θ‖
[θ]
2− ≤ 1 that

5 See the proof of Lemma 3.8 for the existence of the worst input.
6We assume T ∈ [0, h) without loss of generality (see the proof of Theorem 3.5 for essentially the

same arguments).
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‖H[θ]
p ‖ ≥

∣∣C1 exp(AT )x?θ(0) +GTu
?
0θ

∣∣
p

≥
∣∣C1 exp(AT )x?(0) +GTu

?
0

∣∣
p
−
∣∣C1 exp(AT )(x?(0)− x?θ(0))

∣∣
p

−
∣∣GT (u?0 − u?0θ)

∣∣
p

=
∣∣(H[0]

p w
?)(T )

∣∣
p
−
∣∣C1 exp(AT )(x?(0)− x?θ(0))

∣∣
p
−
∣∣GT (u?0 − u?0θ)

∣∣
p
.(54)

Since |(H[0]
p w

?)(T )|p = ‖H[0]
p ‖ by the definitions of w? and T , it follows from the

above claim that

‖H[θ]
p ‖ ≥ ‖H

[0]
p ‖ − (|C1 exp(AT )|p + |GT |p|DΨC2|p)ε ∀θ ∈ [Θ(ε), 0).(55)

Hence, we have

lim inf
θ→−0

‖H[θ]
p ‖ ≥ ‖H

[0]
p ‖ − (|C1 exp(AT )|p + |GT |p|DΨC2|p)ε.(56)

Since ε > 0 is arbitrary and T is independent of ε, we have established the assertion
of the proposition (after rewriting θ as Θ).
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